RECONFIGURATION OF NON-CROSSING SPANNING TREES
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10491483" target="_blank" >RIV/00216208:11320/24:10491483 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=2hwut~J5-4" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=2hwut~J5-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.20382/jocg.v15i1a9" target="_blank" >10.20382/jocg.v15i1a9</a>
Alternative languages
Result language
angličtina
Original language name
RECONFIGURATION OF NON-CROSSING SPANNING TREES
Original language description
For a set P of n points in the plane in general position, a non-crossing spanning tree is a spanning tree of the points where every edge is a straight-line segment between a pair of points and no two edges intersect except at a common endpoint. We study the problem of reconfiguring one non-crossing spanning tree of P to another using a sequence of flips where each flip removes one edge and adds one new edge so that the result is again a non-crossing spanning tree of P. There is a known upper bound that 2n-4 flips suffice [Avis and Fukuda, 1996] and a lower bound that 1.5n-5 flips are sometimes necessary. We give improved bounds that depend on how similar the two trees are. Let d be the number of edges in the final tree but not the initial tree, so at least d flips are required. For points in convex position, we prove an upper bound of 2 d- Q(log d) flips. For general point sets we give a reconfiguration algorithm that uses at most 2 n- 4 flips but reduces that to d + n/2- 1 <= 1.5n- 2 flips when one tree is a path and either the points are in convex position or the path is monotone in some direction. We also examine whether the happy edges (those common to the initial and final trees) need to flip, and we use exhaustive search to find exact minimum flip distances for small point sets.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Computational Geometry
ISSN
1920-180X
e-ISSN
1920-180X
Volume of the periodical
15
Issue of the periodical within the volume
1
Country of publishing house
CA - CANADA
Number of pages
30
Pages from-to
224-253
UT code for WoS article
001380579300003
EID of the result in the Scopus database
2-s2.0-85217828372