THE HYPERSPACE OF NON-BLOCKERS OF SINGLETONS, ALL THE POSSIBLE EXAMPLES
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10492791" target="_blank" >RIV/00216208:11320/24:10492791 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=SbTIT96QlV" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=SbTIT96QlV</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
THE HYPERSPACE OF NON-BLOCKERS OF SINGLETONS, ALL THE POSSIBLE EXAMPLES
Original language description
Given a metric continuum X, a nonempty properclosed subspace B of X, does not block a point p ∈ X B providedthat the union of all subcontinua of X containing p andcontained in X B is a dense subset of X. The collection of allnonempty proper closed subspaces B of X such that B does notblock any element of X B is denoted by NB(F1(X)). In thispaper we prove that for each completely metrizable and separablespace Z, there exists a continuum X such that Z is homeomorphicto NB(F1(X)). This answers a series of questions by Camargo,Capulín, Casta¯neda-Alvarado and Maya.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Topology Proceedings
ISSN
0146-4124
e-ISSN
2331-1290
Volume of the periodical
2024
Issue of the periodical within the volume
63
Country of publishing house
US - UNITED STATES
Number of pages
5
Pages from-to
23-27
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85184514950