The multilinear spherical maximal function in one dimension
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10492810" target="_blank" >RIV/00216208:11320/24:10492810 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=yljT0-ZBP9" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=yljT0-ZBP9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1017/S0013091524000191" target="_blank" >10.1017/S0013091524000191</a>
Alternative languages
Result language
angličtina
Original language name
The multilinear spherical maximal function in one dimension
Original language description
In dimension n = 1, we obtain $L<^>{p_1}(mathbb R) timesdotstimes L<^>{p_m}(mathbb R)$ to $L<^>p(mathbb R)$ boundedness for the multilinear spherical maximal function in the largest possible open set of indices and we provide counterexamples that indicate the optimality of our results.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Proceedings of the Edinburgh Mathematical Society
ISSN
0013-0915
e-ISSN
1464-3839
Volume of the periodical
67
Issue of the periodical within the volume
4
Country of publishing house
GB - UNITED KINGDOM
Number of pages
15
Pages from-to
1045-1059
UT code for WoS article
001321028900001
EID of the result in the Scopus database
2-s2.0-85205565205