All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The multilinear spherical maximal function in one dimension

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10492810" target="_blank" >RIV/00216208:11320/24:10492810 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=yljT0-ZBP9" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=yljT0-ZBP9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1017/S0013091524000191" target="_blank" >10.1017/S0013091524000191</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The multilinear spherical maximal function in one dimension

  • Original language description

    In dimension n = 1, we obtain $L&lt;^&gt;{p_1}(mathbb R) timesdotstimes L&lt;^&gt;{p_m}(mathbb R)$ to $L&lt;^&gt;p(mathbb R)$ boundedness for the multilinear spherical maximal function in the largest possible open set of indices and we provide counterexamples that indicate the optimality of our results.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Proceedings of the Edinburgh Mathematical Society

  • ISSN

    0013-0915

  • e-ISSN

    1464-3839

  • Volume of the periodical

    67

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    15

  • Pages from-to

    1045-1059

  • UT code for WoS article

    001321028900001

  • EID of the result in the Scopus database

    2-s2.0-85205565205