Multilinear rough singular integral operators
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10492775" target="_blank" >RIV/00216208:11320/24:10492775 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ANG2xAVhF7" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=ANG2xAVhF7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1112/jlms.12867" target="_blank" >10.1112/jlms.12867</a>
Alternative languages
Result language
angličtina
Original language name
Multilinear rough singular integral operators
Original language description
We study m$m$-linear homogeneous rough singular integral operators L omega$mathcal {L}_{Omega }$ associated with integrable functions omega$Omega$ on Smn-1$mathbb {S}<^>{mn-1}$ with mean value zero. We prove boundedness for L omega$mathcal {L}_{Omega }$ from Lp1xMIDLINE HORIZONTAL ELLIPSISxLpm$L<^>{p_1}times cdots times L<^>{p_m}$ to Lp$L<^>p$ when 1<p1,MIDLINE HORIZONTAL ELLIPSIS,pm<infinity$1<p_1,dots, p_m<infty$ and 1/p=1/p1+MIDLINE HORIZONTAL ELLIPSIS+1/pm$1/p=1/p_1+cdots +1/p_m$ in the largest possible open set of exponents when omega is an element of Lq(Smn-1)$Omega in L<^>q(mathbb {S}<^>{mn-1})$ and q > 2$qgeqslant 2$. This set can be described by a convex polyhedron in Rm$mathbb {R}<^>m$.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA21-01976S" target="_blank" >GA21-01976S: Geometric and Harmonic Analysis 2</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of the London Mathematical Society
ISSN
0024-6107
e-ISSN
1469-7750
Volume of the periodical
109
Issue of the periodical within the volume
2
Country of publishing house
GB - UNITED KINGDOM
Number of pages
35
Pages from-to
e12867
UT code for WoS article
001161640200003
EID of the result in the Scopus database
2-s2.0-85184497833