All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Multilinear singular integrals with homogeneous kernels near L1

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10492805" target="_blank" >RIV/00216208:11320/24:10492805 - isvavai.cz</a>

  • Result on the web

    <a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=2o7YDZO_j9" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=2o7YDZO_j9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00208-023-02691-x" target="_blank" >10.1007/s00208-023-02691-x</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Multilinear singular integrals with homogeneous kernels near L1

  • Original language description

    We obtain the optimal open range of L-p1(R-n) x &lt;middle dot&gt; &lt;middle dot&gt; &lt;middle dot&gt; x L-pm (R-n) -&gt; L-p(R-n) bounds for multilinear singular integral operators with homogeneous kernels of the form Omega(y/|y|)|y|(-mn), where Omega is a function in Lq(Smn-1) with vanishing integral and q &gt; 1.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematische Annalen

  • ISSN

    0025-5831

  • e-ISSN

    1432-1807

  • Volume of the periodical

    389

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    13

  • Pages from-to

    2259-2271

  • UT code for WoS article

    001079878500003

  • EID of the result in the Scopus database

    2-s2.0-85168614120