Quantitative estimates for bounded holomorphic semigroups
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10493152" target="_blank" >RIV/00216208:11320/24:10493152 - isvavai.cz</a>
Result on the web
<a href="https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=FMzaqWCqmE" target="_blank" >https://verso.is.cuni.cz/pub/verso.fpl?fname=obd_publikace_handle&handle=FMzaqWCqmE</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00233-024-10407-z" target="_blank" >10.1007/s00233-024-10407-z</a>
Alternative languages
Result language
angličtina
Original language name
Quantitative estimates for bounded holomorphic semigroups
Original language description
We revisit the theory of one-parameter semigroups of linear operators on Banach spaces in order to prove quantitative bounds for bounded holomorphic semigroups. Subsequently, relying on these bounds we obtain new quantitative versions of two recent results of Xu related to the vector-valued Littlewood-Paley-Stein theory for symmetric diffusion semigroups.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Semigroup Forum
ISSN
0037-1912
e-ISSN
1432-2137
Volume of the periodical
108
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
30
Pages from-to
115-144
UT code for WoS article
001159491600001
EID of the result in the Scopus database
2-s2.0-85184921905