Exponential Separation Between Powers of Regular and General Resolution over Parities
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216208%3A11320%2F24%3A10493810" target="_blank" >RIV/00216208:11320/24:10493810 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.4230/LIPIcs.CCC.2024.23" target="_blank" >https://doi.org/10.4230/LIPIcs.CCC.2024.23</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4230/LIPIcs.CCC.2024.23" target="_blank" >10.4230/LIPIcs.CCC.2024.23</a>
Alternative languages
Result language
angličtina
Original language name
Exponential Separation Between Powers of Regular and General Resolution over Parities
Original language description
Proving super-polynomial lower bounds on the size of proofs of unsatisfiability of Boolean formulas using resolution over parities is an outstanding problem that has received a lot of attention after its introduction by Itsykson and Sokolov [Dmitry Itsykson and Dmitry Sokolov, 2014]. Very recently, Efremenko, Garlík and Itsykson [Klim Efremenko et al., 2023] proved the first exponential lower bounds on the size of ResLin proofs that were additionally restricted to be bottom-regular. We show that there are formulas for which such regular ResLin proofs of unsatisfiability continue to have exponential size even though there exist short proofs of their unsatisfiability in ordinary, non-regular resolution. This is the first super-polynomial separation between the power of general ResLin and that of regular ResLin for any natural notion of regularity.Our argument, while building upon the work of Efremenko et al. [Klim Efremenko et al., 2023], uses additional ideas from the literature on lifting theorems.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GN22-14872O" target="_blank" >GN22-14872O: Combinatorial Methods in Information Theory</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceeding of 39th Computational Complexity Conference (CCC 2024)
ISBN
978-3-95977-331-7
ISSN
1868-8969
e-ISSN
—
Number of pages
32
Pages from-to
1-32
Publisher name
Leibniz International Proceedings in Informatics (LIPIcs)
Place of publication
Schloss Dagstuhl
Event location
Ann Arbor
Event date
Jul 22, 2024
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—