Asymptotic properties of an unstable two-dimensional differential system with delay
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F06%3A00015380" target="_blank" >RIV/00216224:14310/06:00015380 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Asymptotic properties of an unstable two-dimensional differential system with delay
Original language description
The asymptotic behaviour of the solutions is studied for a real unstable two-dimensional system x'(t)=A(t)x(t)+B(t)x(t-r)+h(t,x(t),x(t-r)), where r>0 is a constant delay. It is supposed that A, B and h are matrix functions and a vector function, respectively. Our results complement those of Kalas [Nonlinear Anal. 62(2)(2005), 207-224], where the conditions for the existence of bounded solutions or solutions tending to the origin as t approaches infinity are given. The method of investigation is basedon the transformation of the real system considered to one equation with complex-valued coefficients. Asymptotic properties of this equation are studied by means of a suitable Lyapunov-Krasovskii functional and by virtue of the Wazewski topological principle. Stability and asymptotic behaviour of the solutions for the stable case of the equation considered were studied in Kalas and Baráková [J. Math. Anal. Appl. 269(1) (2002), 278--300].
Czech name
Asymptotické vlastnosti nestabilního dvourozměrného diferenciálního systému se zpožděním
Czech description
V práci je studováno asymptotické chování řešení pro reálný dvourozměrný systém x'(t)=A(t)x(t)+B(t)x(t-r)+h(t,x(t),x(t-r)), kde r>0 je konstantní zpoždění. Předpokládá se, že A, B a h jsou maticové resp. vektorová funkce. Výsledky doplňují výsledky práce Kalas [Nonlinear Anal. 62(2)(2005), 207-224], kde jsou uvedeny podmínky pro existemci ohraničených řešení nebo řešení blížících se limitně počátku při t rostoucím nade všechny meze. Metoda vyšetřování je založena na transformaci daného reálného systému na jednu rovnici s komplexními koeficienty. Asymptotické vlastnosti této rovnice jsou studovány pomocí vhodného Ljapunov-Krasovského funkcionálu a pomocí Wažewského topologického principu. Stabilita a asymptotické chování řešení pro stabilní případ uvažované rovnice byly studovány v práci Kalas, Baráková [J. Math. Anal. Appl. 269(1)(2002), 278--300].
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/IAA1163401" target="_blank" >IAA1163401: Limit properties of solutions of differential equations</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2006
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematica Bohemica : časopis pro pěstování matematiky
ISSN
0862-7959
e-ISSN
—
Volume of the periodical
131
Issue of the periodical within the volume
3
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
15
Pages from-to
305-319
UT code for WoS article
—
EID of the result in the Scopus database
—