All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Perturbation of nonnegative time scale quadratic functionals

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F07%3A00020419" target="_blank" >RIV/00216224:14310/07:00020419 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Perturbation of nonnegative time scale quadratic functionals

  • Original language description

    In this paper we consider a bounded time scale T=[a,b], a quadratic functional F(x,u) defined over such time scale, and its perturbation G(x,u)=F(x,u)+alpha|x(a)|^2, where the endpoints of F are zero, while the initial endpoint x(a) of G can vary and x(b) is zero. It is known that there is no restriction on x(a) in G when studying the positivity of these functionals. We prove that, when studying the nonnegativity, the initial state x(a) in G must be restricted to a certain subspace, which is the kernelof a specific conjoined basis of the associated time scale symplectic system. This result generalizes a known discrete-time special case, but it is new for the corresponding continuous-time case. We provide several examples which illustrate the theory.

  • Czech name

    Perturbace nezáporných kvadratických funkcionálů na časových škálách

  • Czech description

    V tomto článku uvažujeme omezenou časovou škálu (time scale) T=[a,b], kvadratický funkcionál F(x,u) definovaný na takové časové škále a jeho perturbovaný funkcionál G(x,u)=F(x,u)+alpha|x(a)|^2, přičemž koncové podmínky na funkcionál F jsou nulové, zatímco počáteční hodnoty x(a) funkcionálu G se mohou měnit a x(b) je nula. Je známo, že při studiu pozitivity těchto funkcionálů není žádné omezení na x(a). V této práci ukazujeme, že pro studium nezápornosti musí být počáteční hodnota x(a) v jistém podprostoru, který je roven jádru specifické izotropické báze příslušného symplektického systému na uvažované časové škále. Tento výsledek zobecňuje známý případ, kdy je časová škála diskrétní, ale je nový pro případ spojitý. Dále uvádíme několik příkladů, kteréilustrují danou teorii.

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2007

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Difference Equations, Special Functions, and Orthogonal Polynomials

  • ISBN

    978-981-270-643-0

  • ISSN

  • e-ISSN

  • Number of pages

    10

  • Pages from-to

    266-275

  • Publisher name

    World Scientific

  • Place of publication

    Londyn

  • Event location

    Mnichov

  • Event date

    Jan 1, 2005

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article