The Minus Conjecture revisited
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F09%3A00036301" target="_blank" >RIV/00216224:14310/09:00036301 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
The Minus Conjecture revisited
Original language description
In an earlier paper we proved some results concerning Gross's conjecture on tori. This conjecture, which we call the Minus Conjecture, is closely related to a conjecture of Burns, which is now known to hold generally in the absolutely abelian setting; however Burns' conjecture does not directly imply the Minus Conjecture. The result proved in the earlier paper was concerned with imaginary absolutely abelian extensions <i>K</i>/<b>Q</b> of the form <i>K</i>=<i>FK</i><sup>+</sup>, with <i>F</i> imaginaryquadratic and <i>K</i><sup>+</sup>/<b>Q</b> being tame, <i>l</i>-elementary and ramified at most at two primes. In the present paper we complement these results by proving the Minus Conjecture for extensions <i>K</i>/<b>Q</b> as above but without any restriction on the number s of ramified primes. The price we have to pay for this generality is that our proof only works if the odd prime <i>l</i>>=3(<i>s</i>+1) and <i>l</i> does not divide <i>h<sub>F</sub></i>.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal für die reine und angewandte Mathematik
ISSN
0075-4102
e-ISSN
—
Volume of the periodical
632
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
16
Pages from-to
—
UT code for WoS article
000269065800006
EID of the result in the Scopus database
—