All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The Minus Conjecture revisited

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F09%3A00036301" target="_blank" >RIV/00216224:14310/09:00036301 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    The Minus Conjecture revisited

  • Original language description

    In an earlier paper we proved some results concerning Gross's conjecture on tori. This conjecture, which we call the Minus Conjecture, is closely related to a conjecture of Burns, which is now known to hold generally in the absolutely abelian setting; however Burns' conjecture does not directly imply the Minus Conjecture. The result proved in the earlier paper was concerned with imaginary absolutely abelian extensions <i>K</i>/<b>Q</b> of the form <i>K</i>=<i>FK</i><sup>+</sup>, with <i>F</i> imaginaryquadratic and <i>K</i><sup>+</sup>/<b>Q</b> being tame, <i>l</i>-elementary and ramified at most at two primes. In the present paper we complement these results by proving the Minus Conjecture for extensions <i>K</i>/<b>Q</b> as above but without any restriction on the number s of ramified primes. The price we have to pay for this generality is that our proof only works if the odd prime <i>l</i>&gt;=3(<i>s</i>+1) and <i>l</i> does not divide <i>h<sub>F</sub></i>.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2009

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal für die reine und angewandte Mathematik

  • ISSN

    0075-4102

  • e-ISSN

  • Volume of the periodical

    632

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    16

  • Pages from-to

  • UT code for WoS article

    000269065800006

  • EID of the result in the Scopus database