All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On a conjecture concerning minus parts in the style of Gross

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F08%3A00025891" target="_blank" >RIV/00216224:14310/08:00025891 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    On a conjecture concerning minus parts in the style of Gross

  • Original language description

    This paper is devoted to Gross's conjecture on tori over the base field Q. We call it the Minus Conjecture, since it involves a regulator built from units in the minus part. We recall and develop its relation to a conjecture of Burns, which is now knownto hold generally in the absolutely abelian setting; however in many situations it is not clear at all how one should deduce the Minus Conjecture from it. We prove a somewhat weaker statement (order of vanishing) rather generally, and we give a proof ofthe Minus Conjecture for some specific classes of absolutely abelian extensions K/Q, for which K^+/Q is l-elementary and ramified in at most two primes. The field K is assumed to be of the form FK^+ where F is an arbitrary imaginary quadratic field. Ourmethods involve a good deal of explicit calculation; among other things, we use p-adic Gamma-functions and the Gross-Koblitz formula.

  • Czech name

    O hypotéze týkající se minus částí ve stylu Grosse

  • Czech description

    Tento článek je věnován Grossově hypotéze o toru nad základním tělesem Q, kterou nazýváme Minus hypotézou, protože zahrnuje regulátor sestrojený z jednotek z minus části. Připomeneme a rozvineme její vztah k Burnsově hypotéze, o které je nyní známo, že platí v absolutně abelovském případě; avšak v mnoha situacích není jasné, jak z ní odvodit Minus hypotézu. Dokážeme poněkud slabší tvrzení (řád nulovosti) poměrně obecně a podáme důkaz Minus hypotézy pro některé specifické třídy absolutně abelovských rozšíření K/Q, pro která K^+/Q je l-elementární a větví se nejvýše ve dvou prvočíslech. O tělese K předpokládáme, že je tvaru FK^+, kde F je libovolné imaginární kvadratické těleso. Naše metody zahrnují notný díl explicitních výpočtů; mimo jiné užíváme p-adickou Gamma-funkci a Gross-Koblitzovu formuli.

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2008

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Acta Arithmetica

  • ISSN

    0065-1036

  • e-ISSN

  • Volume of the periodical

    132

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    PL - POLAND

  • Number of pages

    48

  • Pages from-to

  • UT code for WoS article

    000258702800001

  • EID of the result in the Scopus database