Biautomata for k-Piecewise Testable Languages
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F12%3A00057569" target="_blank" >RIV/00216224:14310/12:00057569 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-642-31653-1_31" target="_blank" >http://dx.doi.org/10.1007/978-3-642-31653-1_31</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-642-31653-1_31" target="_blank" >10.1007/978-3-642-31653-1_31</a>
Alternative languages
Result language
angličtina
Original language name
Biautomata for k-Piecewise Testable Languages
Original language description
An effective characterization of piecewise testable languages was given by Simon in 1972. A difficult part of the proof is to show that if L has a J -trivial syntactic monoid M(L) then L is k-piecewise testable for a suitable k. By Simon?s original proof, an appropriate k could be taken as two times the maximal length of a chain of ideals in M(L) . In this paper we improve this estimate of k using the concept of biautomaton: a kind of finite automaton which arbitrarily alternates between reading the input word from the left and from the right. We prove that an appropriate k could be taken as the length of the longest simple path in the canonical biautomaton of L. We also show that this bound is better than the known bounds which use the syntactic monoid of L.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GBP202%2F12%2FG061" target="_blank" >GBP202/12/G061: Center of excellence - Institute for theoretical computer science (CE-ITI)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Developments in Language Theory
ISBN
9783642316524
ISSN
0302-9743
e-ISSN
—
Number of pages
12
Pages from-to
344-355
Publisher name
Springer - Verlag
Place of publication
Berlin Heidelberg
Event location
Taipei, Taiwan
Event date
Jan 1, 2012
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—