Singular Sturmian theory for linear Hamiltonian differential systems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F13%3A00066282" target="_blank" >RIV/00216224:14310/13:00066282 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.aml.2013.07.004" target="_blank" >http://dx.doi.org/10.1016/j.aml.2013.07.004</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.aml.2013.07.004" target="_blank" >10.1016/j.aml.2013.07.004</a>
Alternative languages
Result language
angličtina
Original language name
Singular Sturmian theory for linear Hamiltonian differential systems
Original language description
We establish a Sturmian type theorem comparing the number of focal points of any conjoined basis of a nonoscillatory linear Hamiltonian differential system with the number of focal points of the principal solution. We also present various extensions of this statement.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F11%2F0768" target="_blank" >GAP201/11/0768: Qualitative properties of solutions of differential equations and their applications</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Appl. Math. Letters
ISSN
0893-9659
e-ISSN
—
Volume of the periodical
26
Issue of the periodical within the volume
12
Country of publishing house
GB - UNITED KINGDOM
Number of pages
5
Pages from-to
1187-1191
UT code for WoS article
000324843100014
EID of the result in the Scopus database
—