Development and validation of a general appoach to predict and quantify the synergism of anti-cancer drugs using experimental design and artificial neural networks
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F13%3A00068012" target="_blank" >RIV/00216224:14310/13:00068012 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.talanta.2013.04.031" target="_blank" >http://dx.doi.org/10.1016/j.talanta.2013.04.031</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.talanta.2013.04.031" target="_blank" >10.1016/j.talanta.2013.04.031</a>
Alternative languages
Result language
angličtina
Original language name
Development and validation of a general appoach to predict and quantify the synergism of anti-cancer drugs using experimental design and artificial neural networks
Original language description
The combination of two or more drugs using multidrug mixtures is a trend in the treatment of cancer. The goal is to search for a synergistic effect and thereby reduce the required dose and inhibit the development of resistance. An advanced model-free approach for data exploration and analysis, based on artificial neural networks (ANN) and experimental design is proposed to predict and quantify the synergism of drugs. The proposed method non-linearly correlates the concentrations of drugs with the cytotoxicity of the mixture, providing the possibility of choosing the optimal drug combination that gives the maximum synergism. The use of ANN allows for the prediction of the cytotoxicity of each combination of drugs in the chosen concentration interval. The method was validated by preparing and experimentally testing the combinations with the predicted highest synergistic effect. In all cases, the data predicted by the network were experimentally confirmed.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
CB - Analytical chemistry, separation
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Talanta
ISSN
0039-9140
e-ISSN
—
Volume of the periodical
115
Issue of the periodical within the volume
2013
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
10
Pages from-to
84-93
UT code for WoS article
000328095600012
EID of the result in the Scopus database
—