Homogeneous almost complex structures in dimension 6 with semi-simple isotropy
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F14%3A00080231" target="_blank" >RIV/00216224:14310/14:00080231 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s10455-014-9428-y" target="_blank" >http://dx.doi.org/10.1007/s10455-014-9428-y</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10455-014-9428-y" target="_blank" >10.1007/s10455-014-9428-y</a>
Alternative languages
Result language
angličtina
Original language name
Homogeneous almost complex structures in dimension 6 with semi-simple isotropy
Original language description
We classify invariant almost complex structures on homogeneous manifolds of dimension 6 with semi-simple isotropy. Those with non-degenerate Nijenhuis tensor have the automorphism group of dimension either 14 or 9. An invariant almost complex structure with semi-simple isotropy is necessarily either of specified 6 homogeneous types or a left-invariant structure on a Lie group. For integrable invariant almost complex structures we classify all compatible invariant Hermitian structures on these homogeneous manifolds, indicate their integrability properties (Kahler, SNK, SKT) and mark the other interesting geometric properties (including the Gray-Hervella type).
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Annals of Global Analysis and Geometry
ISSN
0232-704X
e-ISSN
—
Volume of the periodical
46
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
27
Pages from-to
361-387
UT code for WoS article
000345135400003
EID of the result in the Scopus database
—