Many for the price of one duality principle for affine sets
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F15%3A00094191" target="_blank" >RIV/00216224:14310/15:00094191 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s10485-014-9373-8" target="_blank" >http://dx.doi.org/10.1007/s10485-014-9373-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10485-014-9373-8" target="_blank" >10.1007/s10485-014-9373-8</a>
Alternative languages
Result language
angličtina
Original language name
Many for the price of one duality principle for affine sets
Original language description
Recently, D. Hofmann considered topological spaces as generalized orders, characterizing the ones, which satisfy a suitably defined topological analogue of the complete distributivity law. He showed that the category of distributive spaces is dually equivalent to a category of frames, since they both represent the idempotents split completion of the same category. This paper considers the duality of D. Hofmann in the setting of affine sets of Y. Diers.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/EE2.3.20.0051" target="_blank" >EE2.3.20.0051: Algebraic methods in Quantum Logic</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Applied Categorical Structures
ISSN
0927-2852
e-ISSN
—
Volume of the periodical
23
Issue of the periodical within the volume
5
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
21
Pages from-to
643-663
UT code for WoS article
000360665600001
EID of the result in the Scopus database
—