Characterization of self-adjoint extensions for discrete symplectic systems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F16%3A00089506" target="_blank" >RIV/00216224:14310/16:00089506 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.jmaa.2016.03.028" target="_blank" >http://dx.doi.org/10.1016/j.jmaa.2016.03.028</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmaa.2016.03.028" target="_blank" >10.1016/j.jmaa.2016.03.028</a>
Alternative languages
Result language
angličtina
Original language name
Characterization of self-adjoint extensions for discrete symplectic systems
Original language description
All self-adjoint extensions of minimal linear relation associated with the discrete symplectic system are characterized. Especially, for the scalar case on a finite discrete interval some equivalent forms and the uniqueness of the given expression are discussed and the Krein--von Neumann extension is described explicitly. In addition, a limit point criterion for symplectic systems is established. The result partially generalizes even the classical limit point criterion for the second order Sturm--Liouville difference equations.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/EE2.3.30.0009" target="_blank" >EE2.3.30.0009: Employment of Newly Graduated Doctors of Science for Scientific Excellence</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Analysis and Applications
ISSN
0022-247X
e-ISSN
—
Volume of the periodical
440
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
28
Pages from-to
323-350
UT code for WoS article
000374809000020
EID of the result in the Scopus database
—