All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Characterization of self-adjoint extensions for discrete symplectic systems

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F16%3A00089506" target="_blank" >RIV/00216224:14310/16:00089506 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.jmaa.2016.03.028" target="_blank" >http://dx.doi.org/10.1016/j.jmaa.2016.03.028</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jmaa.2016.03.028" target="_blank" >10.1016/j.jmaa.2016.03.028</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Characterization of self-adjoint extensions for discrete symplectic systems

  • Original language description

    All self-adjoint extensions of minimal linear relation associated with the discrete symplectic system are characterized. Especially, for the scalar case on a finite discrete interval some equivalent forms and the uniqueness of the given expression are discussed and the Krein--von Neumann extension is described explicitly. In addition, a limit point criterion for symplectic systems is established. The result partially generalizes even the classical limit point criterion for the second order Sturm--Liouville difference equations.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/EE2.3.30.0009" target="_blank" >EE2.3.30.0009: Employment of Newly Graduated Doctors of Science for Scientific Excellence</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Analysis and Applications

  • ISSN

    0022-247X

  • e-ISSN

  • Volume of the periodical

    440

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    28

  • Pages from-to

    323-350

  • UT code for WoS article

    000374809000020

  • EID of the result in the Scopus database