All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Non-limit-circle and limit-point criteria for symplectic and linear Hamiltonian systems

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F23%3A00134071" target="_blank" >RIV/00216224:14310/23:00134071 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1002/mana.202000427" target="_blank" >https://doi.org/10.1002/mana.202000427</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/mana.202000427" target="_blank" >10.1002/mana.202000427</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Non-limit-circle and limit-point criteria for symplectic and linear Hamiltonian systems

  • Original language description

    Several necessary and/or sufficient conditions for the existence of a non–square-integrable solution of symplectic dynamic systems with general linear dependence on the spectral parameter on time scales are established and a sufficient condition for the limit-point case is derived. Almost all presented results are new even in the continuous and discrete cases, that is, for the linear Hamiltonian differential systems and for the discrete symplectic systems, respectively.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA16-00611S" target="_blank" >GA16-00611S: Hamiltonian and symplectic systems: oscillation and spectral theory</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematische Nachrichten

  • ISSN

    0025-584X

  • e-ISSN

    1522-2616

  • Volume of the periodical

    296

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    26

  • Pages from-to

    434-459

  • UT code for WoS article

    000870904500001

  • EID of the result in the Scopus database

    2-s2.0-85140239714