Non-limit-circle and limit-point criteria for symplectic and linear Hamiltonian systems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F23%3A00134071" target="_blank" >RIV/00216224:14310/23:00134071 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1002/mana.202000427" target="_blank" >https://doi.org/10.1002/mana.202000427</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/mana.202000427" target="_blank" >10.1002/mana.202000427</a>
Alternative languages
Result language
angličtina
Original language name
Non-limit-circle and limit-point criteria for symplectic and linear Hamiltonian systems
Original language description
Several necessary and/or sufficient conditions for the existence of a non–square-integrable solution of symplectic dynamic systems with general linear dependence on the spectral parameter on time scales are established and a sufficient condition for the limit-point case is derived. Almost all presented results are new even in the continuous and discrete cases, that is, for the linear Hamiltonian differential systems and for the discrete symplectic systems, respectively.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA16-00611S" target="_blank" >GA16-00611S: Hamiltonian and symplectic systems: oscillation and spectral theory</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematische Nachrichten
ISSN
0025-584X
e-ISSN
1522-2616
Volume of the periodical
296
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
26
Pages from-to
434-459
UT code for WoS article
000870904500001
EID of the result in the Scopus database
2-s2.0-85140239714