All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

FROM POLAROGRAPHY TO ELIMINATION VOLTAMMETRY

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F17%3A00096905" target="_blank" >RIV/00216224:14310/17:00096905 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    FROM POLAROGRAPHY TO ELIMINATION VOLTAMMETRY

  • Original language description

    Thirty years ago the theory of elimination polarography (EP) and elimination voltammetry with linear scan (EVLS) was firstly published and experimentally verified [1-6]. The elimination procedure applied in both polarography as well as voltammetry can be considered as a mathematical model of the transformation of current-potential curves capable of eliminating some selected current components, while conserving others by means of elimination functions. While the elimination functions in EP use the differential dependence of a current component on time, the EVLS works on the basis of the different dependence of current components (diffusion, charging and kinetic) on the scan rate. Thereafter, the chosen EVLS function needs two or three voltammetric (LSV or CV) curves measured at different scan rates only. Due to longer time and experimental demands of elimination polarography, EVLS has been achieving greater development and usage during last decade. To this date it has found applications not only in electroanalysis, but also in studying electrode processes of inorganic and organic electroactive substances at mercury, silver and/or graphite electrodes [7-35]. For fully adsorbed electroactive species the function eliminating charging and kinetic current components, and conserving the diffusion current component, yields the specific, sensitive and well developed peak-counterpeak (p-cp) signal [7,8,16]. This signal, usually 10-20 times higher than corresponding measured voltammetric peak, is successfully employed in the analysis of nucleic acids and short homo- or hetero-deoxyoligonucleotides (ODNs) containing adenine and cytosine [10,15,17,19,21,22,33,34]. Moreover, it has been shown that the EVLS in combination with adsorptive stripping procedure is a promising tool for achieving very good resolution of electrode processes, for qualitative and quantitative analysis of ODNs and their components, as well as for the identification of ODN structures [10,15,17,19,21,22,33,34].

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

    <a href="/en/project/LD15058" target="_blank" >LD15058: Preparation of substrates for Surface Enhanced Raman Spectroscopy using electrochemical, electrophoretic and spark discharge utilizing methods.</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    XVII. Workshop of Physical Chemists and Electrochemists

  • ISBN

    9788021085800

  • ISSN

  • e-ISSN

  • Number of pages

    2

  • Pages from-to

    23-24

  • Publisher name

    Masarykova univerzita

  • Place of publication

    Brno

  • Event location

    Brno

  • Event date

    May 30, 2017

  • Type of event by nationality

    EUR - Evropská akce

  • UT code for WoS article