All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The natural compound Jatrophone interferes with Wnt/beta-catenin signaling and inhibits proliferation and EMT in human triple-negative breast cancer

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F17%3A00099798" target="_blank" >RIV/00216224:14310/17:00099798 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5744972/" target="_blank" >https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5744972/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1371/journal.pone.0189864" target="_blank" >10.1371/journal.pone.0189864</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The natural compound Jatrophone interferes with Wnt/beta-catenin signaling and inhibits proliferation and EMT in human triple-negative breast cancer

  • Original language description

    Metastatic breast cancer is the leading cause of worldwide cancer-related deaths among women. Triple negative breast cancers (TNBC) are highly metastatic and are devoid of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2) amplification. TNBCs are unresponsive to Herceptin and/or anti-estrogen therapies and too often become highly chemoresistant when exposed to standard chemotherapy. TNBCs frequently metastasize to the lung and brain. We have previously shown that TNBCs are active for oncogenic Wnt10b/beta-catenin signaling and that WNT10B ligand and its downstream target HMGA2 are predictive of poorer outcomes and are strongly associated with chemoresistant TNBC metastatic disease. In search of new chemicals to target the oncogenic WNT10B/beta-CATENIN/HMGA2 signaling axis, the anti-proliferative activity of the diterpene Jatrophone (JA), derived from the plant Jatropha isabelli, was tested on TNBC cells. JA interfered with the WNT TOPFLASH reporter at the level between receptor complex and beta-catenin activation. JA efficacy was determined in various subtypes of TNBC conventional cell lines or in TNBC cell lines derived from TNBC PDX tumors. The differential IC50 (DCI50) responsiveness was compared among the TNBC models based on etiological-subtype and their cellular chemoresistance status. Elevated WNT10B expression also coincided with increased resistance to JA exposure in several metastatic cell lines. JA interfered with cell cycle progression, and induced loss of expression of the canonical Wnt-direct targets genes AXIN2, HMGA2, MYC, PCNA and CCND1. These results indicate that Jatrophone could be a powerful new chemotherapeutic agent against highly chemoresistant triple negative breast cancers by targeting the oncogenic Wnt10b/beta-catenin signaling pathway.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10608 - Biochemistry and molecular biology

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Plos one

  • ISSN

    1932-6203

  • e-ISSN

  • Volume of the periodical

    12

  • Issue of the periodical within the volume

    12

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    18

  • Pages from-to

  • UT code for WoS article

    000419006200051

  • EID of the result in the Scopus database

    2-s2.0-85039553330