All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

C-projective symmetries of submanifolds in quaternionic geometry

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F19%3A00108244" target="_blank" >RIV/00216224:14310/19:00108244 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/article/10.1007/s10455-018-9631-3" target="_blank" >https://link.springer.com/article/10.1007/s10455-018-9631-3</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10455-018-9631-3" target="_blank" >10.1007/s10455-018-9631-3</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    C-projective symmetries of submanifolds in quaternionic geometry

  • Original language description

    The generalized Feix-Kaledin construction shows that c-projective 2n-manifolds with curvature of type (1,1) are precisely the submanifolds of quaternionic 4n-manifolds which are fixed-point set of a special type of quaternionic circle action. In this paper, we consider this construction in the presence of infinitesimal symmetries of the two geometries. First, we prove that the submaximally symmetric c-projective model with type (1,1) curvature is a submanifold of a submaximally symmetric quaternionic model and show how this fits into the construction. We give conditions for when the c-projective symmetries extend from the fixed-point set of the circle action to quaternionic symmetries, and we study the quaternionic symmetries of the Calabi and Eguchi-Hanson hyperkahler structures, showing that in some cases all quaternionic symmetries are obtained in this way.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GBP201%2F12%2FG028" target="_blank" >GBP201/12/G028: Eduard Čech Institute for algebra, geometry and mathematical physics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Annals of Global Analysis and Geometry

  • ISSN

    0232-704X

  • e-ISSN

  • Volume of the periodical

    55

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    22

  • Pages from-to

    395-416

  • UT code for WoS article

    000463599800001

  • EID of the result in the Scopus database

    2-s2.0-85054561630