All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The Poincare Lemma, Antiexact Forms, and Fermionic Quantum Harmonic Oscillator

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F20%3A00114410" target="_blank" >RIV/00216224:14310/20:00114410 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/s00025-020-01247-8" target="_blank" >https://doi.org/10.1007/s00025-020-01247-8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00025-020-01247-8" target="_blank" >10.1007/s00025-020-01247-8</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The Poincare Lemma, Antiexact Forms, and Fermionic Quantum Harmonic Oscillator

  • Original language description

    The paper focuses on various properties and applications of the homotopy operator, which occurs in the Poincare lemma. In the first part, an abstract operator calculus is constructed, where the exterior derivative is an abstract derivative and the homotopy operator plays the role of an abstract integral. This operator calculus can be used to formulate abstract differential equations. An example of the eigenvalue problem that resembles the fermionic quantum harmonic oscillator is presented. The second part presents the dual complex to the Dolbeault bicomplex generated by the homotopy operator on complex manifolds.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

    <a href="/en/project/GA19-06357S" target="_blank" >GA19-06357S: Geometric structures, differential operators and symmetries</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Results in Mathematics

  • ISSN

    1422-6383

  • e-ISSN

  • Volume of the periodical

    75

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    14

  • Pages from-to

    1-14

  • UT code for WoS article

    000547250400001

  • EID of the result in the Scopus database

    2-s2.0-85087905863