The Poincare Lemma, Antiexact Forms, and Fermionic Quantum Harmonic Oscillator
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F20%3A00114410" target="_blank" >RIV/00216224:14310/20:00114410 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/s00025-020-01247-8" target="_blank" >https://doi.org/10.1007/s00025-020-01247-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00025-020-01247-8" target="_blank" >10.1007/s00025-020-01247-8</a>
Alternative languages
Result language
angličtina
Original language name
The Poincare Lemma, Antiexact Forms, and Fermionic Quantum Harmonic Oscillator
Original language description
The paper focuses on various properties and applications of the homotopy operator, which occurs in the Poincare lemma. In the first part, an abstract operator calculus is constructed, where the exterior derivative is an abstract derivative and the homotopy operator plays the role of an abstract integral. This operator calculus can be used to formulate abstract differential equations. An example of the eigenvalue problem that resembles the fermionic quantum harmonic oscillator is presented. The second part presents the dual complex to the Dolbeault bicomplex generated by the homotopy operator on complex manifolds.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/GA19-06357S" target="_blank" >GA19-06357S: Geometric structures, differential operators and symmetries</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Results in Mathematics
ISSN
1422-6383
e-ISSN
—
Volume of the periodical
75
Issue of the periodical within the volume
3
Country of publishing house
CH - SWITZERLAND
Number of pages
14
Pages from-to
1-14
UT code for WoS article
000547250400001
EID of the result in the Scopus database
2-s2.0-85087905863