Energy conservation for inhomogeneous incompressible and compressible Euler equations
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F20%3A00114713" target="_blank" >RIV/00216224:14310/20:00114713 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.jde.2020.05.025" target="_blank" >https://doi.org/10.1016/j.jde.2020.05.025</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jde.2020.05.025" target="_blank" >10.1016/j.jde.2020.05.025</a>
Alternative languages
Result language
angličtina
Original language name
Energy conservation for inhomogeneous incompressible and compressible Euler equations
Original language description
Energy conservations are studied for inhomogeneous incompressible and compressible Euler equations with general pressure law in a torus or a bounded domain. We provide sufficient conditions for a weak solution to conserve the energy. By exploiting a suitable test function, the spatial regularity for the density is only required to be of order 2/3 in the incompressible case, and of order 1/3 in the compressible case. When the density is constant, we recover the existing results for classical incompressible Euler equation. (c) 2020 Published by Elsevier Inc.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GJ19-14413Y" target="_blank" >GJ19-14413Y: Linear and nonlinear elliptic equations with singular data and related problems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Differential Equations
ISSN
0022-0396
e-ISSN
1090-2732
Volume of the periodical
269
Issue of the periodical within the volume
9
Country of publishing house
US - UNITED STATES
Number of pages
40
Pages from-to
7171-7210
UT code for WoS article
000544102900026
EID of the result in the Scopus database
2-s2.0-85085889753