All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Energy conservation for inhomogeneous incompressible and compressible Euler equations

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F20%3A00114713" target="_blank" >RIV/00216224:14310/20:00114713 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.jde.2020.05.025" target="_blank" >https://doi.org/10.1016/j.jde.2020.05.025</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jde.2020.05.025" target="_blank" >10.1016/j.jde.2020.05.025</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Energy conservation for inhomogeneous incompressible and compressible Euler equations

  • Original language description

    Energy conservations are studied for inhomogeneous incompressible and compressible Euler equations with general pressure law in a torus or a bounded domain. We provide sufficient conditions for a weak solution to conserve the energy. By exploiting a suitable test function, the spatial regularity for the density is only required to be of order 2/3 in the incompressible case, and of order 1/3 in the compressible case. When the density is constant, we recover the existing results for classical incompressible Euler equation. (c) 2020 Published by Elsevier Inc.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GJ19-14413Y" target="_blank" >GJ19-14413Y: Linear and nonlinear elliptic equations with singular data and related problems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Differential Equations

  • ISSN

    0022-0396

  • e-ISSN

    1090-2732

  • Volume of the periodical

    269

  • Issue of the periodical within the volume

    9

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    40

  • Pages from-to

    7171-7210

  • UT code for WoS article

    000544102900026

  • EID of the result in the Scopus database

    2-s2.0-85085889753