All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Erosion and cathodic arc plasma of Nb-Al cathodes: composite versus intermetallic

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F20%3A00117019" target="_blank" >RIV/00216224:14310/20:00117019 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1088/1361-6595/ab5e32" target="_blank" >https://doi.org/10.1088/1361-6595/ab5e32</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1361-6595/ab5e32" target="_blank" >10.1088/1361-6595/ab5e32</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Erosion and cathodic arc plasma of Nb-Al cathodes: composite versus intermetallic

  • Original language description

    Many properties of cathodic arcs from single-element cathodes show a correlation to the cohesive energy of the cathode material. For example, the burning voltage, the erosion rate, or, to a lesser extent, plasma properties like electron temperatures or average ion energy and charge states. For multi-element cathodes, various phases with different cohesive energies can initially be present in the cathode, or form due to arc exposure, complicating the evaluation of such correlations. To test the influence of morphology and phase composition of multi-element cathodes on cathodic arc properties, a Nb-Al cathode model system was used that includes: pure Nb and Al cathodes; intermetallic Nb3Al, Nb2Al and NbAl3 cathodes; and three composite Nb-Al cathodes with atomic ratios corresponding to the stoichiometric ratios of the intermetallic phases. Pulsed cathodic arc plasmas from these cathodes were examined using a mass-per-charge and energy-per-charge analyzer, showing that charge-state-resolved ion energy distributions of plasmas from the intermetallic and corresponding composite cathodes are nearly identical. An examination of converted layers of eroded cathodes using x-ray diffraction and scanning electron microscopy indicates the formation of a surface layer with similar phase composition for intermetallic and their corresponding composite cathode types. The average arc voltages do not follow the trend of cohesive energies of Nb, Al and intermetallic Nb-Al phases, which have been calculated using density functional theory. Possible reasons for this effect are discussed based on the current knowledge of multi-element arc cathodes and their arc plasma available in literature.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10305 - Fluids and plasma physics (including surface physics)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    PLASMA SOURCES SCIENCE &amp; TECHNOLOGY

  • ISSN

    0963-0252

  • e-ISSN

    1361-6595

  • Volume of the periodical

    29

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    14

  • Pages from-to

    1-14

  • UT code for WoS article

    000537714800009

  • EID of the result in the Scopus database

    2-s2.0-85082126980