All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Eigenfunctions expansion for discrete symplectic systems with general linear dependence on spectral parameter

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F21%3A00118861" target="_blank" >RIV/00216224:14310/21:00118861 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.jmaa.2021.125054" target="_blank" >https://doi.org/10.1016/j.jmaa.2021.125054</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jmaa.2021.125054" target="_blank" >10.1016/j.jmaa.2021.125054</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Eigenfunctions expansion for discrete symplectic systems with general linear dependence on spectral parameter

  • Original language description

    Eigenfunctions expansion for discrete symplectic systems on a finite discrete interval is established in the case of a general linear dependence on the spectral parameter as a significant generalization of the Expansion theorem given by Bohner et al. (2009) [14]. Subsequently, an integral representation of the Weyl-Titchmarsh M(lambda)-function is derived explicitly by using a suitable spectral function and a possible extension to the half-line case is discussed. The main results are illustrated by several examples.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GA19-01246S" target="_blank" >GA19-01246S: New oscillation theory for linear Hamiltonian and symplectic systems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Analysis and Applications

  • ISSN

    0022-247X

  • e-ISSN

    1096-0813

  • Volume of the periodical

    499

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    37

  • Pages from-to

    „125054“

  • UT code for WoS article

    000631268200016

  • EID of the result in the Scopus database

    2-s2.0-85100816010