Eigenfunctions expansion for discrete symplectic systems with general linear dependence on spectral parameter
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F21%3A00118861" target="_blank" >RIV/00216224:14310/21:00118861 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.jmaa.2021.125054" target="_blank" >https://doi.org/10.1016/j.jmaa.2021.125054</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmaa.2021.125054" target="_blank" >10.1016/j.jmaa.2021.125054</a>
Alternative languages
Result language
angličtina
Original language name
Eigenfunctions expansion for discrete symplectic systems with general linear dependence on spectral parameter
Original language description
Eigenfunctions expansion for discrete symplectic systems on a finite discrete interval is established in the case of a general linear dependence on the spectral parameter as a significant generalization of the Expansion theorem given by Bohner et al. (2009) [14]. Subsequently, an integral representation of the Weyl-Titchmarsh M(lambda)-function is derived explicitly by using a suitable spectral function and a possible extension to the half-line case is discussed. The main results are illustrated by several examples.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA19-01246S" target="_blank" >GA19-01246S: New oscillation theory for linear Hamiltonian and symplectic systems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Analysis and Applications
ISSN
0022-247X
e-ISSN
1096-0813
Volume of the periodical
499
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
37
Pages from-to
„125054“
UT code for WoS article
000631268200016
EID of the result in the Scopus database
2-s2.0-85100816010