Non-holonomic equations for the normal extremals in geometric control theory
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F22%3A00119297" target="_blank" >RIV/00216224:14310/22:00119297 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.geomphys.2021.104395" target="_blank" >https://doi.org/10.1016/j.geomphys.2021.104395</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.geomphys.2021.104395" target="_blank" >10.1016/j.geomphys.2021.104395</a>
Alternative languages
Result language
angličtina
Original language name
Non-holonomic equations for the normal extremals in geometric control theory
Original language description
Applying the point of view of non-holonomic mechanics, we arrive at a new and simple system of equations for the normal sub-Riemannian geodesics. These use a partial connection that is canonically available, given a choice of complement to the distribution. We also describe conditions which, if satisfied, mean that even this choice of complement is determined canonically, and that this determines a distinguished connection on the tangent bundle. The geodesic equations obtained split into mutually driving horizontal and complementary parts. The method facilitates efficient choices of adapted coframes and reveals structures that are reminiscent of tractor calculi. We illustrate the features on examples, including some with non-constant symbols.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA20-11473S" target="_blank" >GA20-11473S: Symmetry and invariance in analysis, geometric modelling and control theory</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Geometry and Physics
ISSN
0393-0440
e-ISSN
—
Volume of the periodical
171
Issue of the periodical within the volume
January
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
14
Pages from-to
104395
UT code for WoS article
000711571600005
EID of the result in the Scopus database
2-s2.0-85116896026