Novel endolysin of S. sciuri phage S10 and its antimicrobial effect on S. aureus
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F22%3A00129692" target="_blank" >RIV/00216224:14310/22:00129692 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Novel endolysin of S. sciuri phage S10 and its antimicrobial effect on S. aureus
Original language description
A lot of novel bacteriophages were isolated, characterised and added to the microbial collection of Fagofarma (and MB Pharma) recently. Some of these phages are unique and their genomes encode potentially novel peptidoglycan hydrolases. Such as the phage S. sciuri S10, which was isolated from wastewater and its genome showed low similarity to sequences found in public databases. In its genome, two genes encoding hypothetical endolysin (LysS10) or tail peptidoglycan hydrolase (TPH) were identified. In this study, we focused on examination of potential activity of these two enzymes. Both genes were cloned, the proteins were expressed in E. coli and purified using chromatography. Zymogram was used as the first method for determination of activity on bacterial cell walls isolated from S. sciuri and S. aureus. This test proved activity of endolysin LysS10 on both types of cell walls. Activity of TPH was not proven, therefore, we focused mainly on LysS10 which activity was verified using spot assay and turbidity reduction assay. Moreover, LysS10 activity was compared with the LysK and the LysF1 on different strains and species of Staphylococcus, including MRSA. LysS10 had antimicrobial effect on every tested bacterium, but it was less active compared to LysK and LysF1. Antimicrobial effect of novel endolysin LysS10 was proven by different methods on several S. aureus strains and other staphylococcal species. Although the enzyme is not as efficient as LysK, there is potential for improving its properties by changing domains, protein design of the catalytic domain or increasing the solubility of the protein.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
—
OECD FORD branch
10600 - Biological sciences
Result continuities
Project
<a href="/en/project/NU21J-05-00035" target="_blank" >NU21J-05-00035: Synergy of lytic bacteriophages and antibiotics in the therapy of topical infections of Staphylococcus aureus</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů