Reflectors to quantales
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F23%3A00134055" target="_blank" >RIV/00216224:14310/23:00134055 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.fss.2022.08.023" target="_blank" >https://doi.org/10.1016/j.fss.2022.08.023</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fss.2022.08.023" target="_blank" >10.1016/j.fss.2022.08.023</a>
Alternative languages
Result language
angličtina
Original language name
Reflectors to quantales
Original language description
In this paper, we show that marked quantales have a reflection into quantales. To obtain the reflection we construct free quantales over marked quantales using appropriate lower sets. A marked quantale is a posemigroup in which certain admissible subsets are required to have joins, and multiplication distributes over these. Sometimes are the admissible subsets in question specified by means of a so-called selection function. A distinguishing feature of the study of marked quantales is that a small collection of axioms of an elementary nature allows one to do much that is traditional at the level of quantales. The axioms are sufficiently general to include as examples of marked quantales the classes of posemigroups, σ-quantales, prequantales and quantales. Furthermore, we discuss another reflection to quantales obtained by the injective hull of a posemigroup.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GF20-09869L" target="_blank" >GF20-09869L: The many facets of orthomodularity</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Fuzzy Sets and Systems
ISSN
0165-0114
e-ISSN
1872-6801
Volume of the periodical
455
Issue of the periodical within the volume
March
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
22
Pages from-to
102-123
UT code for WoS article
000927814400001
EID of the result in the Scopus database
2-s2.0-85137913020