Factorization systems and double categories
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F24%3A00136266" target="_blank" >RIV/00216224:14310/24:00136266 - isvavai.cz</a>
Result on the web
<a href="http://www.tac.mta.ca/tac/volumes/41/18/41-18abs.html" target="_blank" >http://www.tac.mta.ca/tac/volumes/41/18/41-18abs.html</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Factorization systems and double categories
Original language description
We show that factorization systems, both strict and orthogonal, can be equivalently described as double categories satisfying certain properties. This provides conceptual reasons for why the category of sets and partial maps or the category of small categories and cofunctors admit orthogonal factorization systems. The theory also gives an explicit description of various lax morphism classifiers and explains why they admit strict factorization systems.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Theory and Applications of Categories
ISSN
1201-561X
e-ISSN
—
Volume of the periodical
41
Issue of the periodical within the volume
18
Country of publishing house
CA - CANADA
Number of pages
42
Pages from-to
551-592
UT code for WoS article
001231984000001
EID of the result in the Scopus database
2-s2.0-85195282165