Adjoint functor theorems for lax-idempotent pseudomonads
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F24%3A00136532" target="_blank" >RIV/00216224:14310/24:00136532 - isvavai.cz</a>
Result on the web
<a href="http://www.tac.mta.ca/tac/volumes/41/20/41-20abs.html" target="_blank" >http://www.tac.mta.ca/tac/volumes/41/20/41-20abs.html</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Adjoint functor theorems for lax-idempotent pseudomonads
Original language description
For each pair of lax-idempotent pseudomonads R and I, for which I is locally fully faithful and R distributes over I, we establish an adjoint functor theorem, relating R-cocontinuity to adjointness relative to I. This provides a new perspective on the nature of adjoint functor theorems, which may be seen as methods to decompose adjointness into cocontinuity and relative adjointness. As special cases, we recover variants of the adjoint functor theorem of Freyd, the multiadjoint functor theorem of Diers, and the pluriadjoint functor theorem of Solian-Viswanathan, as well as the adjoint functor theorems for locally presentable categories. More generally, we recover enriched Φ-adjoint functor theorems for weakly sound classes of weight Φ.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Theory and Applications of Categories
ISSN
1201-561X
e-ISSN
—
Volume of the periodical
41
Issue of the periodical within the volume
20
Country of publishing house
CA - CANADA
Number of pages
19
Pages from-to
667-685
UT code for WoS article
001243753800001
EID of the result in the Scopus database
2-s2.0-85196756693