Semilinear elliptic Schrödinger equations with singular potentials and absorption terms
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F24%3A00139390" target="_blank" >RIV/00216224:14310/24:00139390 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0362546X23001955" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0362546X23001955</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1112/jlms.12844" target="_blank" >10.1112/jlms.12844</a>
Alternative languages
Result language
angličtina
Original language name
Semilinear elliptic Schrödinger equations with singular potentials and absorption terms
Original language description
Let Ω⊂RN (N≥3) be a C2 bounded domain and Σ⊂Ω be a compact, C2 submanifold without boundary, of dimension k with 0≤k1, we show that problem (P) admits several critical exponents in the sense that singular solutions exist in the subcritical cases (i.e. p is smaller than a critical exponent) and singularities are removable in the supercritical cases (i.e. p is greater than a critical exponent). Finally, we establish various necessary and sufficient conditions expressed in terms of appropriate capacities for the solvability of (P).
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA22-17403S" target="_blank" >GA22-17403S: Nonlinear Schrödinger equations and systems with singular potentials</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of the London Mathematical Society
ISSN
0024-6107
e-ISSN
1469-7750
Volume of the periodical
109
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
53
Pages from-to
1-53
UT code for WoS article
001157209900010
EID of the result in the Scopus database
2-s2.0-85180199867