Chain rules for quantum Renyi entropies
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F15%3A00087732" target="_blank" >RIV/00216224:14330/15:00087732 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1063/1.4907981" target="_blank" >http://dx.doi.org/10.1063/1.4907981</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/1.4907981" target="_blank" >10.1063/1.4907981</a>
Alternative languages
Result language
angličtina
Original language name
Chain rules for quantum Renyi entropies
Original language description
We present chain rules for a new definition of the quantum Renyi conditional entropy sometimes called the "sandwiched" Renyi conditional entropy. More precisely, we prove analogues of the equation H(AB|C) = H(A|BC) + H(B|C), which holds as an identity for the von Neumann conditional entropy. In the case of the Rnyi entropy, this relation no longer holds as an equality but survives as an inequality of the form H-alpha(AB|C) > H-beta(A|BC) + H-gamma(B|C), where the parameters alpha, beta, gamma obey the relation alpha/alpha-1 = beta/beta-1 + gamma/gamma-1 and (alpha - 1)(beta - 1)(gamma - 1) > 1; if (alpha - 1)(beta - 1)(gamma - 1) < 1, the direction of the inequality is reversed.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BE - Theoretical physics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP202%2F12%2F1142" target="_blank" >GAP202/12/1142: Weak Sources of Entanglement and Randomness</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Physics
ISSN
0022-2488
e-ISSN
—
Volume of the periodical
56
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
10
Pages from-to
1-10
UT code for WoS article
000350548200025
EID of the result in the Scopus database
—