Course Similarity Analysis
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F16%3A00091055" target="_blank" >RIV/00216224:14330/16:00091055 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Course Similarity Analysis
Original language description
Courses offered to students at universities have different characteristics. In this paper, we analyse course similarities to improve the students’ performance prediction. We utilize the item-to-item collaborative filtering approach that computes course similarities based on students’ grades. We also use content based techniques to compute course similarities based on the information from the course catalogue, e.g. the course content or prerequisites. Using the computed similarities and utilizing different clustering algorithms, we are able to reveal interesting course groups that can be used to improve the student performance prediction. Finally, we are able to predict the students’ final grades of the investigated course by examining grades of only three related courses.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings in Informatics and Information Technologies
ISBN
9788022746199
ISSN
—
e-ISSN
—
Number of pages
4
Pages from-to
65-68
Publisher name
WIKT & DaZ 2016
Place of publication
Bratislava
Event location
Bratislava
Event date
Jan 1, 2016
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
—