All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Random perturbation of sparse graphs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F21%3A00125244" target="_blank" >RIV/00216224:14330/21:00125244 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.37236/9510" target="_blank" >https://doi.org/10.37236/9510</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.37236/9510" target="_blank" >10.37236/9510</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Random perturbation of sparse graphs

  • Original language description

    In the model of randomly perturbed graphs we consider the union of a deterministic graph G α with minimum degree α n and the binomial random graph G ( n , p ) . This model was introduced by Bohman, Frieze, and Martin and for Hamilton cycles their result bridges the gap between Dirac's theorem and the results by Pósa and Korshunov on the threshold in G ( n , p ) . In this note we extend this result in G α ∪ G ( n , p ) to sparser graphs with α = o ( 1 ) . More precisely, for any ε &gt; 0 and α : N ↦ ( 0 , 1 ) we show that a.a.s. G α ∪ G ( n , β / n ) is Hamiltonian, where β = − ( 6 + ε ) log ( α ) . If α &gt; 0 is a fixed constant this gives the aforementioned result by Bohman, Frieze, and Martin and if α = O ( 1 / n ) the random part G ( n , p ) is sufficient for a Hamilton cycle. We also discuss embeddings of bounded degree trees and other spanning structures in this model, which lead to interesting questions on almost spanning embeddings into G ( n , p ) .

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Electronic Journal of Combinatorics

  • ISSN

    1077-8926

  • e-ISSN

  • Volume of the periodical

    28

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    12

  • Pages from-to

    1-12

  • UT code for WoS article

    000762018300001

  • EID of the result in the Scopus database

    2-s2.0-85106001723