Random perturbation of sparse graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F21%3A00125244" target="_blank" >RIV/00216224:14330/21:00125244 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.37236/9510" target="_blank" >https://doi.org/10.37236/9510</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.37236/9510" target="_blank" >10.37236/9510</a>
Alternative languages
Result language
angličtina
Original language name
Random perturbation of sparse graphs
Original language description
In the model of randomly perturbed graphs we consider the union of a deterministic graph G α with minimum degree α n and the binomial random graph G ( n , p ) . This model was introduced by Bohman, Frieze, and Martin and for Hamilton cycles their result bridges the gap between Dirac's theorem and the results by Pósa and Korshunov on the threshold in G ( n , p ) . In this note we extend this result in G α ∪ G ( n , p ) to sparser graphs with α = o ( 1 ) . More precisely, for any ε > 0 and α : N ↦ ( 0 , 1 ) we show that a.a.s. G α ∪ G ( n , β / n ) is Hamiltonian, where β = − ( 6 + ε ) log ( α ) . If α > 0 is a fixed constant this gives the aforementioned result by Bohman, Frieze, and Martin and if α = O ( 1 / n ) the random part G ( n , p ) is sufficient for a Hamilton cycle. We also discuss embeddings of bounded degree trees and other spanning structures in this model, which lead to interesting questions on almost spanning embeddings into G ( n , p ) .
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Electronic Journal of Combinatorics
ISSN
1077-8926
e-ISSN
—
Volume of the periodical
28
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
12
Pages from-to
1-12
UT code for WoS article
000762018300001
EID of the result in the Scopus database
2-s2.0-85106001723