On bias, variance, overfitting, gold standard and consensus in single-particle analysis by cryo-electron microscopy
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F22%3A00125553" target="_blank" >RIV/00216224:14330/22:00125553 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1107/S2059798322001978" target="_blank" >https://doi.org/10.1107/S2059798322001978</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1107/S2059798322001978" target="_blank" >10.1107/S2059798322001978</a>
Alternative languages
Result language
angličtina
Original language name
On bias, variance, overfitting, gold standard and consensus in single-particle analysis by cryo-electron microscopy
Original language description
Cryo-electron microscopy (cryoEM) has become a well established technique to elucidate the 3D structures of biological macromolecules. Projection images from thousands of macromolecules that are assumed to be structurally identical are combined into a single 3D map representing the Coulomb potential of the macromolecule under study. This article discusses possible caveats along the image-processing path and how to avoid them to obtain a reliable 3D structure. Some of these problems are very well known in the community. These may be referred to as sample-related (such as specimen denaturation at interfaces or non-uniform projection geometry leading to underrepresented projection directions). The rest are related to the algorithms used. While some have been discussed in depth in the literature, such as the use of an incorrect initial volume, others have received much less attention. However, they are fundamental in any data-analysis approach. Chiefly among them, instabilities in estimating many of the key parameters that are required for a correct 3D reconstruction that occur all along the processing workflow are referred to, which may significantly affect the reliability of the whole process. In the field, the term overfitting has been coined to refer to some particular kinds of artifacts. It is argued that overfitting is a statistical bias in key parameter-estimation steps in the 3D reconstruction process, including intrinsic algorithmic bias. It is also shown that common tools (Fourier shell correlation) and strategies (gold standard) that are normally used to detect or prevent overfitting do not fully protect against it. Alternatively, it is proposed that detecting the bias that leads to overfitting is much easier when addressed at the level of parameter estimation, rather than detecting it once the particle images have been combined into a 3D map. Comparing the results from multiple algorithms (or at least, independent executions of the same algorithm) can detect parameter bias. These multiple executions could then be averaged to give a lower variance estimate of the underlying parameters.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/EF16_013%2F0001802" target="_blank" >EF16_013/0001802: CERIT Scientific Cloud</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Acta Crystallographica Section D: Structural Biology
ISSN
2059-7983
e-ISSN
—
Volume of the periodical
78
Issue of the periodical within the volume
4
Country of publishing house
GB - UNITED KINGDOM
Number of pages
14
Pages from-to
410-423
UT code for WoS article
000777860500002
EID of the result in the Scopus database
2-s2.0-85127401863