All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Segmentation and Tracking of Mammary Epithelial Organoids in Brightfield Microscopy

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F23%3A00130029" target="_blank" >RIV/00216224:14330/23:00130029 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1109/TMI.2022.3210714" target="_blank" >https://doi.org/10.1109/TMI.2022.3210714</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TMI.2022.3210714" target="_blank" >10.1109/TMI.2022.3210714</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Segmentation and Tracking of Mammary Epithelial Organoids in Brightfield Microscopy

  • Original language description

    We present an automated and deep-learningbased workflow to quantitatively analyze the spatiotemporal development of mammary epithelial organoids in twodimensional time-lapse (2D+t) sequences acquired using a brightfield microscope at high resolution. It involves a convolutional neural network (U-Net), purposely trained using computer-generated bioimage data created by a conditional generative adversarial network (pix2pixHD), to infer semantic segmentation, adaptive morphological filtering to identify organoid instances, and a shape-similarity-constrained, instance-segmentation-correcting tracking procedure to reliably cherry-pick the organoid instances of interest in time. By validating it using real 2D+t sequences of mouse mammary epithelial organoids of morphologically different phenotypes, we clearly demonstrate that the workflow achieves reliable segmentation and tracking performance, providing a reproducible and laborless alternative to manual analyses of the acquired bioimage data.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10200 - Computer and information sciences

Result continuities

  • Project

    <a href="/en/project/GA21-20374S" target="_blank" >GA21-20374S: Segmentation and tracking of cells with complex shapes</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    IEEE Transactions on Medical Imaging

  • ISSN

    0278-0062

  • e-ISSN

    1558-254X

  • Volume of the periodical

    42

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    10

  • Pages from-to

    281-290

  • UT code for WoS article

    000907160700023

  • EID of the result in the Scopus database

    2-s2.0-85139490407