UNIFORM TURAN DENSITY OF CYCLES
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14330%2F23%3A00133881" target="_blank" >RIV/00216224:14330/23:00133881 - isvavai.cz</a>
Result on the web
<a href="https://www.ams.org/journals/tran/2023-376-07/S0002-9947-2023-08873-0/" target="_blank" >https://www.ams.org/journals/tran/2023-376-07/S0002-9947-2023-08873-0/</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1090/tran/8873" target="_blank" >10.1090/tran/8873</a>
Alternative languages
Result language
angličtina
Original language name
UNIFORM TURAN DENSITY OF CYCLES
Original language description
In the early 1980s, Erdos and Sos initiated the study of the classical Turan problem with a uniformity condition: the uniform Turan density of a hypergraph H is the infimum over all d for which any sufficiently large hypergraph with the property that all its linear-size subhypergraphs have density at least d contains H. In particular, they raise the questions of determining the uniform Turan densities of K-4((3)-) and K-4((3)). The former question was solved only recently by Glebov, Kral', and Volec [Israel J. Math. 211 (2016), pp. 349-366] and Reiher, Rodl, and Schacht [J. Eur. Math. Soc. 20 (2018), pp. 1139-1159], while the latter still remains open for almost 40 years. In addition to K-4((3)-), the only 3-uniform hypergraphs whose uniform Turan density is known are those with zero uniform Turan density classified by Reiher, Rodl and Schacht [J. London Math. Soc. 97 (2018), pp. 77-97] and a specific family with uniform Turan density equal to 1/27.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Transactions of the American Mathematical Society
ISSN
0002-9947
e-ISSN
—
Volume of the periodical
376
Issue of the periodical within the volume
7
Country of publishing house
US - UNITED STATES
Number of pages
45
Pages from-to
4765-4809
UT code for WoS article
000967035900001
EID of the result in the Scopus database
2-s2.0-85160944208