Automated shape-based clustering of 3D immunoglobulin protein structures in chronic lymphocytic leukemia
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14740%2F18%3A00106662" target="_blank" >RIV/00216224:14740/18:00106662 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1186/s12859-018-2381-1" target="_blank" >http://dx.doi.org/10.1186/s12859-018-2381-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1186/s12859-018-2381-1" target="_blank" >10.1186/s12859-018-2381-1</a>
Alternative languages
Result language
angličtina
Original language name
Automated shape-based clustering of 3D immunoglobulin protein structures in chronic lymphocytic leukemia
Original language description
Background: Although the etiology of chronic lymphocytic leukemia (CLL), the most common type of adult leukemia, is still unclear, strong evidence implicates antigen involvement in disease ontogeny and evolution. Primary and 3D structure analysis has been utilised in order to discover indications of antigenic pressure. The latter has been mostly based on the 3D models of the clonotypic B cell receptor immunoglobulin (BcR IG) amino acid sequences. Therefore, their accuracy is directly dependent on the quality of the model construction algorithms and the specific methods used to compare the ensuing models. Thus far, reliable and robust methods that can group the IG 3D models based on their structural characteristics are missing. Results: Here we propose a novel method for clustering a set of proteins based on their 3D structure focusing on 3D structures of BcR IG from a large series of patients with CLL. The method combines techniques from the areas of bioinformatics, 3D object recognition and machine learning. The clustering procedure is based on the extraction of 3D descriptors, encoding various properties of the local and global geometrical structure of the proteins. The descriptors are extracted from aligned pairs of proteins. A combination of individual 3D descriptors is also used as an additional method. The comparison of the automatically generated clusters to manual annotation by experts shows an increased accuracy when using the 3D descriptors compared to plain bioinformatics-based comparison. The accuracy is increased even more when using the combination of 3D descriptors. Conclusions: The experimental results verify that the use of 3D descriptors commonly used for 3D object recognition can be effectively applied to distinguishing structural differences of proteins. The proposed approach can be applied to provide hints for the existence of structural groups in a large set of unannotated BcR IG protein files in both CLL and, by logical extension, other contexts where it is relevant to characterize BcR IG structural similarity. The method does not present any limitations in application and can be extended to other types of proteins.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10608 - Biochemistry and molecular biology
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
BMC Bioinformatics
ISSN
1471-2105
e-ISSN
—
Volume of the periodical
19
Issue of the periodical within the volume
NOV
Country of publishing house
GB - UNITED KINGDOM
Number of pages
15
Pages from-to
414
UT code for WoS article
000454362600006
EID of the result in the Scopus database
2-s2.0-85056744630