Characterization of insulin crystalline form in isolated beta-cell secretory granules
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14740%2F22%3A00128509" target="_blank" >RIV/00216224:14740/22:00128509 - isvavai.cz</a>
Result on the web
<a href="https://royalsocietypublishing.org/doi/10.1098/rsob.220322" target="_blank" >https://royalsocietypublishing.org/doi/10.1098/rsob.220322</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1098/rsob.220322" target="_blank" >10.1098/rsob.220322</a>
Alternative languages
Result language
angličtina
Original language name
Characterization of insulin crystalline form in isolated beta-cell secretory granules
Original language description
Insulin is stored in vivo inside the pancreatic beta-cell insulin secretory granules. In vitro studies have led to an assumption that high insulin and Zn2+ concentrations inside the pancreatic beta-cell insulin secretory granules should promote insulin crystalline state in the form of Zn2+-stabilized hexamers. Electron microscopic images of thin sections of the pancreatic beta-cells often show a dense, regular pattern core, suggesting the presence of insulin crystals. However, the structural features of the storage forms of insulin in native preparations of secretory granules are unknown, because of their small size, fragile character and difficult handling. We isolated and investigated the secretory granules from MIN6 cells under near-native conditions, using cryo-electron microscopic (Cryo-EM) techniques. The analysis of these data from multiple intra-granular crystals revealed two different rhomboidal crystal lattices. The minor lattice has unit cell parameters (a similar or equal to b similar or equal to 84.0 angstrom, c similar or equal to 35.2 angstrom), similar to in vitro crystallized human 4Zn(2+)-insulin hexamer, whereas the largely prevalent unit cell has more than double c-axis (a similar or equal to b similar or equal to c similar or equal to 96.5 angstrom) that probably corresponds to two or three insulin hexamers in the asymmetric unit. Our experimental data show that insulin can be present in pancreatic MIN6 cell granules in a microcrystalline form, probably consisting of 4Zn(2+)-hexamers of this hormone.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10608 - Biochemistry and molecular biology
Result continuities
Project
<a href="/en/project/LM2018127" target="_blank" >LM2018127: Czech Infrastructure for Integrative Structural Biology</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Open Biology
ISSN
2046-2441
e-ISSN
—
Volume of the periodical
12
Issue of the periodical within the volume
12
Country of publishing house
GB - UNITED KINGDOM
Number of pages
10
Pages from-to
220322
UT code for WoS article
000900974200003
EID of the result in the Scopus database
2-s2.0-85144273379