CRISPR/Cas-mediated chromosome engineering: Heritable chromosome rearrangements in Cardamine hirsuta
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14740%2F24%3A00139129" target="_blank" >RIV/00216224:14740/24:00139129 - isvavai.cz</a>
Result on the web
<a href="https://meetings.embo.org/event/24-plant-genome" target="_blank" >https://meetings.embo.org/event/24-plant-genome</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
CRISPR/Cas-mediated chromosome engineering: Heritable chromosome rearrangements in Cardamine hirsuta
Original language description
Large-scale chromosome rearrangements, including deletions, inversions, and reciprocal translocations, have long been recognized as critical events in plant genome evolution and speciation. In era of CRISPR/Cas, the capacity to engineer such rearrangements provides unparalleled opportunities to investigate the genetic and phenotypic consequences of these genetic alternations. This study utilized CRISPR/Cas technology to induce large chromosome rearrangements in the genome of Cardamine hirsuta (Brassicaceae; n = 8), a model organism widely employed for investigating developmental processes, ecological interactions, and evolutionary adaptations. Agrobacterium-mediated floral dip transformation was utilized, with a transfer vector carrying SaCas9 under the control of an egg-cell-specific promoter, along with two highly specific gRNAs designed to target specific loci for chromosome rearrangement induction. PCR analysis, Sanger sequencing, and chromosome painting confirmed the presence of a 3-kb deletion and inversion on chromosome Ch8, as well as 0.1 to 2-Mb reciprocal translocation between chromosomes Ch6 and Ch8. Importantly, the heritability of these engineered chromosome rearrangements was confirmed across subsequent generations (T2 and T3). These findings highlight the potency of CRISPR/Cas tools in manipulating chromosomal structures in C. hirsuta genome, paving the way for future experiments aimed at reshaping crucifer karyotype structure and elucidating the profound consequences of such rearrangements.
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
—
OECD FORD branch
10611 - Plant sciences, botany
Result continuities
Project
<a href="/en/project/EH22_008%2F0004581" target="_blank" >EH22_008/0004581: TowArds Next GENeration Crops (TANGENC)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů