Functionalized magnetic micro- and nanoparticles: optimization and application to ?-chip trypsin digestion
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25310%2F06%3A00004342" target="_blank" >RIV/00216275:25310/06:00004342 - isvavai.cz</a>
Alternative codes found
RIV/61389013:_____/06:00040402
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Functionalized magnetic micro- and nanoparticles: optimization and application to ?-chip trypsin digestion
Original language description
The preparation of an easily replaceable protease microreactor for micro-chip application is described. Magnetic particles coated with poly(N-isopropylacrylamide), polystyrene, poly(2-hydroxyethyl methacrylate-co-ethylene dimethacrylate), poly(glycidyl methacrylate), [(2-amino-ethyl)hydroxymethylen]biphosphonic acid, or alginic acid with immobilized trypsin were utilized for heterogeneous digestion. The properties were optimized, with the constraint of allowing immobilization in a microchannel by a magnetic field gradient. To obtain the highest digestion efficiency, sub-micrometer spheres were organized by an inhomogeneous external magnetic field perpendicularly to the direction of the channel. Kinetic parameters of the enzyme reactor immobilized in micro-chip capillary (micro-chip immobilized magnetic enzyme reactor (IMER)) were determined. The capability of the proteolytic reactor was demonstrated by five model (glyco)proteins ranging in molecular mass from 4.3 to 150 kDa. Digestion
Czech name
Functionalized magnetic micro- and nanoparticles: optimization and application to ?-chip trypsin digestion
Czech description
The preparation of an easily replaceable protease microreactor for micro-chip application is described. Magnetic particles coated with poly(N-isopropylacrylamide), polystyrene, poly(2-hydroxyethyl methacrylate-co-ethylene dimethacrylate), poly(glycidyl methacrylate), [(2-amino-ethyl)hydroxymethylen]biphosphonic acid, or alginic acid with immobilized trypsin were utilized for heterogeneous digestion. The properties were optimized, with the constraint of allowing immobilization in a microchannel by a magnetic field gradient. To obtain the highest digestion efficiency, sub-micrometer spheres were organized by an inhomogeneous external magnetic field perpendicularly to the direction of the channel. Kinetic parameters of the enzyme reactor immobilized in micro-chip capillary (micro-chip immobilized magnetic enzyme reactor (IMER)) were determined. The capability of the proteolytic reactor was demonstrated by five model (glyco)proteins ranging in molecular mass from 4.3 to 150 kDa. Digestion
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
CE - Biochemistry
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2006
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Electrophoresis
ISSN
0173-0835
e-ISSN
—
Volume of the periodical
2006
Issue of the periodical within the volume
27
Country of publishing house
DE - GERMANY
Number of pages
14
Pages from-to
811-24
UT code for WoS article
—
EID of the result in the Scopus database
—