All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Functionalized magnetic micro- and nanoparticles: optimization and application to ?-chip trypsin digestion

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25310%2F06%3A00004342" target="_blank" >RIV/00216275:25310/06:00004342 - isvavai.cz</a>

  • Alternative codes found

    RIV/61389013:_____/06:00040402

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Functionalized magnetic micro- and nanoparticles: optimization and application to ?-chip trypsin digestion

  • Original language description

    The preparation of an easily replaceable protease microreactor for micro-chip application is described. Magnetic particles coated with poly(N-isopropylacrylamide), polystyrene, poly(2-hydroxyethyl methacrylate-co-ethylene dimethacrylate), poly(glycidyl methacrylate), [(2-amino-ethyl)hydroxymethylen]biphosphonic acid, or alginic acid with immobilized trypsin were utilized for heterogeneous digestion. The properties were optimized, with the constraint of allowing immobilization in a microchannel by a magnetic field gradient. To obtain the highest digestion efficiency, sub-micrometer spheres were organized by an inhomogeneous external magnetic field perpendicularly to the direction of the channel. Kinetic parameters of the enzyme reactor immobilized in micro-chip capillary (micro-chip immobilized magnetic enzyme reactor (IMER)) were determined. The capability of the proteolytic reactor was demonstrated by five model (glyco)proteins ranging in molecular mass from 4.3 to 150 kDa. Digestion

  • Czech name

    Functionalized magnetic micro- and nanoparticles: optimization and application to ?-chip trypsin digestion

  • Czech description

    The preparation of an easily replaceable protease microreactor for micro-chip application is described. Magnetic particles coated with poly(N-isopropylacrylamide), polystyrene, poly(2-hydroxyethyl methacrylate-co-ethylene dimethacrylate), poly(glycidyl methacrylate), [(2-amino-ethyl)hydroxymethylen]biphosphonic acid, or alginic acid with immobilized trypsin were utilized for heterogeneous digestion. The properties were optimized, with the constraint of allowing immobilization in a microchannel by a magnetic field gradient. To obtain the highest digestion efficiency, sub-micrometer spheres were organized by an inhomogeneous external magnetic field perpendicularly to the direction of the channel. Kinetic parameters of the enzyme reactor immobilized in micro-chip capillary (micro-chip immobilized magnetic enzyme reactor (IMER)) were determined. The capability of the proteolytic reactor was demonstrated by five model (glyco)proteins ranging in molecular mass from 4.3 to 150 kDa. Digestion

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    CE - Biochemistry

  • OECD FORD branch

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2006

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Electrophoresis

  • ISSN

    0173-0835

  • e-ISSN

  • Volume of the periodical

    2006

  • Issue of the periodical within the volume

    27

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    14

  • Pages from-to

    811-24

  • UT code for WoS article

  • EID of the result in the Scopus database