Low-temperature growth of crystalline Tin(II) monosulfide thin films by atomic layer deposition using a liquid divalent tin precursor
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25310%2F21%3A39917534" target="_blank" >RIV/00216275:25310/21:39917534 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0169433221012289" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0169433221012289</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.apsusc.2021.150152" target="_blank" >10.1016/j.apsusc.2021.150152</a>
Alternative languages
Result language
angličtina
Original language name
Low-temperature growth of crystalline Tin(II) monosulfide thin films by atomic layer deposition using a liquid divalent tin precursor
Original language description
In this study, better-quality stoichiometric SnS thin films were prepared by atomic layer deposition (ALD) using a liquid divalent Sn precursor, N, N'-di-t-butyl-2-methylpropane-1,2-diamido tin(II) [Sn(dmpa)], and H2S. A relatively high growth per ALD cycle (GPC) value of approximately 0.13 nm/cycle was achieved at 125 degrees C. Furthermore, crystalline SnS films could be grown from room temperature (25 degrees C) to a high temperature of 250 degrees C. Density functional theory (DFT) calculations were used to examine the surface reactions and self-limiting nature of the Sn precursor. Mixed phases of cubic (pi) and orthorhombic (o) SnS films were deposited at low temperatures (25-100 degrees C), whereas only the orthorhombic phase prevailed at high growth temperatures (>125 degrees C) based on the complementary results of X-ray diffractometry (XRD), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) analyses. The optoelectronic properties of the SnS films were further evaluated by spectroscopic ellipsometry (SE) analysis. The results from the SE analysis supported the observed change from mixed pi-SnS and o-SnS to o-SnS with increasing deposition temperature and allowed the determination of the energy bandgap (similar to 1.1 eV) and a relatively broad semi-transparent window (up to 3000 nm). Overall, this new ALD process for obtaining a good quality SnS is applicable even at room temperature (25 degrees C), and we foresee that this process could be of considerable interest for emerging applications.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20501 - Materials engineering
Result continuities
Project
<a href="/en/project/LM2018103" target="_blank" >LM2018103: Center of Materials and Nanotechnologies - Research Infrastructure</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2021
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Applied Surface Science
ISSN
0169-4332
e-ISSN
1873-5584
Volume of the periodical
565
Issue of the periodical within the volume
November
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
13
Pages from-to
150152
UT code for WoS article
000681177100002
EID of the result in the Scopus database
2-s2.0-85111039786