Low-Temperature Atomic Layer Deposition of Highly Conformal Tin Nitride Thin Films for Energy Storage Devices
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25310%2F19%3A39914833" target="_blank" >RIV/00216275:25310/19:39914833 - isvavai.cz</a>
Result on the web
<a href="https://pubs.acs.org/doi/10.1021/acsami.9b15790" target="_blank" >https://pubs.acs.org/doi/10.1021/acsami.9b15790</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acsami.9b15790" target="_blank" >10.1021/acsami.9b15790</a>
Alternative languages
Result language
angličtina
Original language name
Low-Temperature Atomic Layer Deposition of Highly Conformal Tin Nitride Thin Films for Energy Storage Devices
Original language description
We present an atomic layer deposition (ALD) process for the synthesis of tin nitride (SnNx) thin films using tetrakis(dimethylamino) tin (TDMASn, Sn(NMe2)4) and ammonia (NH3) as the precursors at low deposition temperatures (70−200 °C). This newly developed ALD scheme exhibits ideal ALD features such as self-limited film growth at 150 °C. The growth per cycle (GPC) was found to be cca 0.21 nm/cycle at 70 °C, which decreased with increasing deposition temperature. Interestingly, when the deposition temperature was between 125 and 180 °C, the GPC remained almost constant at cca 0.10 nm/cycle, which suggests an ALD temperature window, whereas upon further increasing the temperature to 200 °C, the GPC considerably decreased to cca 0.04 nm/cycle. Thermodynamic analysis via density functional theory calculations showed that the self-saturation of TDMASn would occur on an NH2-terminated surface. Moreover, it also suggests that the condensation of a molecular precursor and the desorption of surface *NH2 moieties would occur at lower and higher temperatures outside the ALD window, respectively. Thanks to the characteristics of ALD, this process could be used to conformally and uniformly deposit SnNx onto an ultranarrow dual-trench Si structure (minimum width: 15 nm; aspect ratio: ∼6.3) with ∼100% step coverage. Several analysis tools such as transmission electron microscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy, Rutherford backscattering spectrometry, and secondary-ion mass spectrometry were used to characterize the film properties under different deposition conditions. XRD showed that a hexagonal SnN phase was obtained at a relatively low deposition temperature (100−150 °C), whereas cubic Sn3N4 was formed at a higher deposition temperature (175−200 °C). The stoichiometry of these thermally grown ALD-SnNx films (Sn-to-N ratio) deposited at 150 °C was determined to be ∼1:0.93 with negligible impurities. The optoelectronic properties of the SnNx films, such as the band gap, wavelength-dependent refractive index, extinction coefficient, carrier concentration, and mobility, were further evaluated via spectroscopic ellipsometry analysis. Finally, ALD SnNx-coated Ni-foam (NF) and hollow carbon nanofibers were successfully used as free-standing electrodes in electrochemical supercapacitors and in Li-ion batteries, which showed a higher charge-storage time (about eight times greater than that of the uncoated NF) and a specific capacity of cca 520 mAh/g after 100 cycles at 0.1 A/g, respectively. This enhanced performance might be due to the uniform coverage of these substrates by ALD-SnNx, which ensures good electric contact and mechanical stability during electrochemical reactions.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ACS Applied Materials & Interfaces
ISSN
1944-8244
e-ISSN
—
Volume of the periodical
11
Issue of the periodical within the volume
46
Country of publishing house
US - UNITED STATES
Number of pages
14
Pages from-to
"43608−43621"
UT code for WoS article
000499740300080
EID of the result in the Scopus database
—