All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Separation of Antibiotics Using Two Commercial Nanofiltration Membranes—Experimental Study and Modelling

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25310%2F24%3A39921719" target="_blank" >RIV/00216275:25310/24:39921719 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/2077-0375/14/12/248" target="_blank" >https://www.mdpi.com/2077-0375/14/12/248</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/membranes14120248" target="_blank" >10.3390/membranes14120248</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Separation of Antibiotics Using Two Commercial Nanofiltration Membranes—Experimental Study and Modelling

  • Original language description

    The widespread use of antimicrobial drugs has contributed to the increasing trace levels of contaminants in the environment, posing an environmental problem and a challenge to modern-day medicine seeking advanced solutions. Nanofiltration is one such breakthrough solution for the selective removal of antibiotics from wastewater due to their high efficiency, scalability, and versatility. This study examines the separation of antibiotics (sulfamethoxazole (SMX), trimethoprim (TMP), and metformin (MET), respectively) using commercially available membranes with an emphasis on AFC membranes (AFC 30 and AFC 80). Thus, we evaluate their efficacy, performance, and applicability in wastewater treatment processes. The data for characterizing the structural parameters of the NF membranes were determined from an uncharged organic solute rejection experiment, and the effect of various operating conditions on the retention of solutes was evaluated. All experimental data were collected using a laboratory-scale nanofiltration unit and HPLC, and rejection percentages were determined using analytical measurements. The results obtained allowed for the determination of the radius of the membrane pores using the Steric Hindrance Pore (SHP) model, resulting in values of 0.353 and 0.268 nm for the AFC 30 and AFC 80 membranes, respectively. Additionally, higher transmembrane pressure and feed flow were observed to lead to an increased rejection of antibiotics. AFC 30 demonstrated a rejection of 94% for SMX, 87% for TMP, and 87% for MET, while AFC 80 exhibited a rejection of 99.5% for SMX, 97.5% for TMP, and 98% for MET. The sieving effect appears to be the primary separation mechanism for AFC 30, as lower feed-flow rates were observed to intensify concentration polarization, thereby compromising rejection efficiency. On the contrary, AFC 80 experienced less concentration polarization due to its smaller pore sizes, effectively preventing pore clogging. Membrane performance was evaluated using the Spiegler–Kedem–Katchalsky model, based on irreversible thermodynamics, which effectively explained the mechanism of solute transport of antibiotics through the AFC 30 and AFC 80 membranes in the NF process.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20402 - Chemical process engineering

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Membranes

  • ISSN

    2077-0375

  • e-ISSN

    2077-0375

  • Volume of the periodical

    14

  • Issue of the periodical within the volume

    12

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    19

  • Pages from-to

    248

  • UT code for WoS article

    001384935800001

  • EID of the result in the Scopus database

    2-s2.0-85213444661