The Merrifield-Simmons index for the linear octagonal chains
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F19%3A39914255" target="_blank" >RIV/00216275:25410/19:39914255 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
The Merrifield-Simmons index for the linear octagonal chains
Original language description
The Merrifield-Simmons index for a simple undirected graph G=(V,E) is given by the number of subsets U of V such that no two vertices in U are adjacent. This number is one of the most popular topological index in chemistry, which was firstly defined and called as the Fibonacci number of a graph. Octagonal chains are cata-condensed systems of octagons and represent a class of polycyclic conjugated hydrocarbons. In this contribution we obtain an exact formula for the Merrifield-Simmons index of linear octagonal chains.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
18th Conference on Applied Mathematics, APLIMAT 2019
ISBN
978-1-5108-8214-0
ISSN
—
e-ISSN
—
Number of pages
8
Pages from-to
1058-1065
Publisher name
Slovenská technická univezita v Bratislave
Place of publication
Bratislava
Event location
Bratislava
Event date
Feb 5, 2019
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
—