FIBONACCI NUMBERS OF GRAPHS CORRESPONDING TO A TYPE OF HEXAGONAL CHAINS
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F14%3A39897476" target="_blank" >RIV/00216275:25410/14:39897476 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
FIBONACCI NUMBERS OF GRAPHS CORRESPONDING TO A TYPE OF HEXAGONAL CHAINS
Original language description
The concept of the Fibonacci number of an undirected graph G=(V,E), refers to the number of subsets U of V such that no two vertices in U are adjacent. In this contribution a variant of the decomposition theorem is derived. The Fibonacci numbers of graphs corresponding to one type of hexagonal chains are calculated by using the decomposition formula. Searching of the Fibonacci numbers of certain classes of graphs leads to difference equations or their systems. The Fibonacci number of hexagonal chain with linearly annelated hexagons is found as a function of the number of hexagons in the chain.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
APLIMAT 2014: 13th Conference on Applied Mathematics: proceedings
ISBN
978-80-227-4140-8
ISSN
—
e-ISSN
—
Number of pages
8
Pages from-to
352-359
Publisher name
Slovenská technická univezita v Bratislave
Place of publication
Bratislava
Event location
Bratislava
Event date
Feb 4, 2014
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
—