The Fibonacci numbers for the molecular graphs of linear phenylenes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F16%3A39901019" target="_blank" >RIV/00216275:25410/16:39901019 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
The Fibonacci numbers for the molecular graphs of linear phenylenes
Original language description
The concept of the Fibonacci number of an undirected graph G=(V,E) refers to the number of independent vertex subsets U of V such that no two vertices from U are adjacent in G. In this paper the Fibonacci numbers of molecular graphs corresponding to one type of phenylenes are calculated using the decomposition formula. Investigation of the Fibonacci numbers of certain classes of graphs leads to a difference equation or systems of difference equations. The explicit formula for the Fibonacci numbers of linear phenylenes is found as a function of the number n of hexagons in the phenylene.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
International Journal of Pure and Applied Mathematics
ISSN
1311-8080
e-ISSN
—
Volume of the periodical
106
Issue of the periodical within the volume
1
Country of publishing house
BG - BULGARIA
Number of pages
10
Pages from-to
307-316
UT code for WoS article
—
EID of the result in the Scopus database
—