All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The Fibonacci numbers for the molecular graphs of linear phenylenes

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F16%3A39901019" target="_blank" >RIV/00216275:25410/16:39901019 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    The Fibonacci numbers for the molecular graphs of linear phenylenes

  • Original language description

    The concept of the Fibonacci number of an undirected graph G=(V,E) refers to the number of independent vertex subsets U of V such that no two vertices from U are adjacent in G. In this paper the Fibonacci numbers of molecular graphs corresponding to one type of phenylenes are calculated using the decomposition formula. Investigation of the Fibonacci numbers of certain classes of graphs leads to a difference equation or systems of difference equations. The explicit formula for the Fibonacci numbers of linear phenylenes is found as a function of the number n of hexagons in the phenylene.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    International Journal of Pure and Applied Mathematics

  • ISSN

    1311-8080

  • e-ISSN

  • Volume of the periodical

    106

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    BG - BULGARIA

  • Number of pages

    10

  • Pages from-to

    307-316

  • UT code for WoS article

  • EID of the result in the Scopus database