All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The Fibonacci numbers for the molecular graphs of two types of bent hexagonal chains

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F17%3A39902676" target="_blank" >RIV/00216275:25410/17:39902676 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    The Fibonacci numbers for the molecular graphs of two types of bent hexagonal chains

  • Original language description

    The Fibonacci number of an undirected graph G=(V,E) is given by the number of subsets U of V such that no two vertices in U are adjacent. This number is one of the most popular topological indices in chemistry, which is called as the Merrifield-Simmons index there. Hexagonal chains are the graph representations of an important subclass of benzenoid molecules. In this contribution we follow our previous results on the Fibonacci number of the linear hexagonal chains. We obtain exact formulas for the Fibonacci numbers of two types of bent hexagonal chains.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10102 - Applied mathematics

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    16th Conference on Applied Mathematics APLIMAT 2017 : proceedings

  • ISBN

    978-80-227-4650-2

  • ISSN

  • e-ISSN

    neuvedeno

  • Number of pages

    10

  • Pages from-to

    1388-1397

  • Publisher name

    Spektrum STU

  • Place of publication

    Bratislava

  • Event location

    Bratislava

  • Event date

    Jan 31, 2017

  • Type of event by nationality

    EUR - Evropská akce

  • UT code for WoS article