The Fibonacci numbers for the molecular graphs of two types of bent hexagonal chains
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F17%3A39902676" target="_blank" >RIV/00216275:25410/17:39902676 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
The Fibonacci numbers for the molecular graphs of two types of bent hexagonal chains
Original language description
The Fibonacci number of an undirected graph G=(V,E) is given by the number of subsets U of V such that no two vertices in U are adjacent. This number is one of the most popular topological indices in chemistry, which is called as the Merrifield-Simmons index there. Hexagonal chains are the graph representations of an important subclass of benzenoid molecules. In this contribution we follow our previous results on the Fibonacci number of the linear hexagonal chains. We obtain exact formulas for the Fibonacci numbers of two types of bent hexagonal chains.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
16th Conference on Applied Mathematics APLIMAT 2017 : proceedings
ISBN
978-80-227-4650-2
ISSN
—
e-ISSN
neuvedeno
Number of pages
10
Pages from-to
1388-1397
Publisher name
Spektrum STU
Place of publication
Bratislava
Event location
Bratislava
Event date
Jan 31, 2017
Type of event by nationality
EUR - Evropská akce
UT code for WoS article
—