On the Fibonacci numbers of the molecular graphs of some bent phenylenes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F18%3A39913085" target="_blank" >RIV/00216275:25410/18:39913085 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On the Fibonacci numbers of the molecular graphs of some bent phenylenes
Original language description
The Fibonacci number f (G) of a graph G = (V;E) is defined as the number of all subsets U of V such that no two vertices in U are adjacent. Phenylenes represent a class of condensed polycyclic conjugated compounds which have the molecular graph possessing both six-membered and four-membered circuits. In this paper we are concerned with special types of bent phenylenes expanding our previous results on the linear phenylenes. The explicit formulas for the Fibonacci numbers of the bent phenylenes are found as functions of the number n of hexagons in both mentioned branches of phenylene.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Italian journal of pure and applied mathematics
ISSN
1126-8042
e-ISSN
—
Volume of the periodical
39
Issue of the periodical within the volume
February 2018
Country of publishing house
IT - ITALY
Number of pages
10
Pages from-to
498-507
UT code for WoS article
000429644100042
EID of the result in the Scopus database
2-s2.0-85045767331