All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Inverse FEM Analysis I: Stochastic Training of Neural Network

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F05%3APU54992" target="_blank" >RIV/00216305:26110/05:PU54992 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    čeština

  • Original language name

    Inverse FEM Analysis I: Stochastic Training of Neural Network

  • Original language description

    The paper suggests a new approach of inverse analysis to obtain parameters of FEM computational model in order to obtain best agreement witch experimental data. The proposed inverse analysis approach is based on coupling of FEM computational model and the stochastic training of artificial neural network. Identification parameters play the role of basic random variables witch a scatter reflecting the physical range of possible values. Novelty of the approach is the utilization of efficient small-sample ssimulation method Latin Hypercube Sampling (LHS) used for training of neural network.

  • Czech name

    Inverse FEM Analysis I: Stochastic Training of Neural Network

  • Czech description

    The paper suggests a new approach of inverse analysis to obtain parameters of FEM computational model in order to obtain best agreement witch experimental data. The proposed inverse analysis approach is based on coupling of FEM computational model and the stochastic training of artificial neural network. Identification parameters play the role of basic random variables witch a scatter reflecting the physical range of possible values. Novelty of the approach is the utilization of efficient small-sample ssimulation method Latin Hypercube Sampling (LHS) used for training of neural network.

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    JM - Structural engineering

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA103%2F04%2F2092" target="_blank" >GA103/04/2092: Model identification and optimization at material a structural levels</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2005

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Inženýrská mechanika 2005

  • ISBN

    80-85918-93-5

  • ISSN

  • e-ISSN

  • Number of pages

    12

  • Pages from-to

    233-244

  • Publisher name

  • Place of publication

    Svratka, Czech Republic

  • Event location

    Svratka

  • Event date

    May 9, 2005

  • Type of event by nationality

    CST - Celostátní akce

  • UT code for WoS article